Foundations: Operational Analysis and Queuing Models

Software Performance Engineering: Theory & Practice

Outline

- Operational Analysis
 - Utilization Law
 - Little's Law
 - Bottleneck analysis
- Queuing models
 - Open models
 - · M/M/1; M/M/n; M/D/1; M/G/1; G/G/1
 - Closed Network models

Analytic modeling of computer system performance

- Prediction ⇒ Capacity planning
 - Out-of-Capacity conditions can be catastrophic
 - Performance is usually cited as the 2nd most important factor related to user satisfaction
- Finite limits on computing resources
 - Understand queueing behavior when resources saturate
- Analytic methods:
 - Bottleneck analysis for current systems
 - Compare design alternatives for new application development

Historical Development

- The 1st generation of computers (~1960) that used semiconductor technology led to rapid expansion of the field of Computer Science
 - IBM 360
 - timesharing required cost accounting based on resource usage
- Similarity between computerized task scheduling algorithms and optimizations familiar from Operations Research
 - e.g., see Donald Knuth, "The Art of Computer Programming: Fundamental Algorithms," first published in 1968.
 - Instrumentation added to assist with fine-tuning these algorithms

Historical Development

- Early computers were not only expensive, but they were slow (by today's standards)
- these limitations inspired intense interest in performance
 - e.g., Sort algorithms
- Cost accounting in early *time-shared* systems that ran batch jobs required instrumentation:
 - execution time + queueing = turnaround time
 - resource consumption
 - CPU time
 - IOs to peripherals (disk, tape)
 - lines printed
 - · etc.

Historical Development: References

- Leonard Kleinrock, *Queuing Systems: Volume II Computer Applications*, 1976.
- Peter Denning and Jeff Buzen, "The Operational analysis of queuing network models," *Computing Surveys*, 1978.
- Ed Lazowska, et. al., Quantitative System Performance, 1984.
- Connie Smith, Performance Engineering of Software Systems, 1990.

Scalability

Scalability

- Why does actual performance diverge from the ideal?
 - Computer resources have finite capacity limits
 - As the workload grows, these limits eventually become manifest
 - Concurrent requests for shared resources generates contention
 - e.g., processor sharing:
 - · time-slicing
 - priority

Algorithm complexity (scalability)

Notation

- T: the length of time or duration of the observation period
- K: the set of computer resources: CPUs, disks, etc.
- B_i: total busy time of resource K_i during observation period T
- A_i : service requests to resource K_i during period T
- $-A_{\theta}$: Total requests (*arrivals*) during period T
- C_i: service requests completed at resource K_i during period T
- $^{\Box}$ C_o: Total requests completed (*completions*) during period T

Notation

- T: the length of time or *duration* of the observation period
- K: the set of computer resources: CPUs, disks, etc.
- B_i: total busy time of resource K_i during observation period T
- A_i: service requests to resource K_i during period T
- A₀: Total requests (arrivals) during period T
- C_i: service requests completed at resource K_i during period T
- C_{θ} : Total requests completed (*completions*) during period T

Basic Equations

mean service time at resource K_i

$$\cdot S_i = B_i/C_i$$

utilization of resource K_i

$$\cdot U_i = B_i / T$$

throughput (completions) at resource K_i during *T*

$$\cdot X_i = C_i / T$$

 λ_i , the arrival rate at resource K_i during T

•
$$\lambda_i = A_i / T$$

system thruput

$$\cdot X_{\varrho} = C_{\varrho} / T$$

visits per request at resource K_i

$$\cdot V_i = C_i / C_o$$

• Example:

- T = 60 seconds
- K = 1 resource
- $B_1 = 36$ seconds
- $A_1 = A_0 = 1800 \text{ requests}$
- $C_1 = C_0 = 1800 \text{ requests}$

Basic Equations

- mean service time at resource K_i
 - $\cdot S_i = B_i/C_i$
- utilization of resource K_i
 - $\cdot U_i = B_i / T$
- throughput (completions) at resource K_i during T
 - $\cdot X_i = C_i / T$
- $\label{eq:lambda_i} \begin{array}{l} ^{\mathbf{D}} \ \lambda_{i} \ , \ \text{the arrival rate at resource } \mathbf{K}_{i} \\ \text{during } \mathbf{\textit{T}} \end{array}$
 - $\lambda_i = A_i / T$
- system thruput
 - $\cdot X_{\varrho} = C_{\varrho} / T$
- visits per request at resource K_i
 - $\cdot V_i = C_i / C_0$

• Example:

- T = 60 seconds
- K = 1 resource
- $B_1 = 36$ seconds
- $A_1 = A_0 = 1800 \text{ requests}$
- $C_1 = C_0 = 1800 \text{ requests}$

$$S_1 = B_1 / C_1 = 36 / 1800 = 20 \text{ ms.}$$
 $U_1 = B_1 / T = 36 / 60 = 60\%$
 $\lambda_1 = A_1 / T = 1800 / 60 = 30/\text{sec}$
 $C_1 = C_1 / T = 1800 / 60 = 30/\text{sec}$

Basic Equations

- mean service time at resource K;
 - $\cdot S_i = B_i/C_i$
- utilization of resource K;
 - $\cdot U_i = B_i / T$
- throughput (completions) at resource K, during T
 - $\cdot X_i = C_i / T$
- $\ \ \, \lambda_i$, the arrival rate at resource K_i during T
 - $\lambda_i = A_i / T$
- system thruput
 - $\cdot X_0 = C_0 / T$
- visits per request at resource K;

$$\cdot V_i = C_i / C_0$$

Utilization Law:

$$u = \lambda * \overline{s}$$

- Service time is also frequently called the average latency
- Utilization (% busy) is a value between 0 and 1.
 - no device can be utilized more than 100%
 - a device can be driven to 100% utilization if it is (carefully) *scheduled*...

Utilization Law

• Consider the problem of copying a file from one disk to another as fast as possible...

• Goal: Drive disk utilization ⇒100%

Reader Thread

Buffer 0 1 2 3 4 5 6 7

Writer Thread

File System

SPE: Foundations

Utilization Law

 What if you are copying a file from one disk to a location in the cloud...

Buffer

Pool

0

- How many buffers are needed?
- What synchronization is required?

Utilization Law

In general, what if the Reader and Writer speeds are

mis-matched?

□ e.g.,

streaming video

plus, use a circular buffer
 to save space in memory

Capacity

- Since no device can be utilized more than 100%, at (or near) 100% utilization, a resource has reached its *capacity* limit.
 - Throughput
 - Bandwidth
- Consider some common types of computer hardware and their *finite* capacity limits:
 - Processor (CPU)
 - Memory
 - Disk
 - Network adapter/endpoint

Capacity

• Computer resources have finite *capacity* limits:

Component	Performance, Capacity, or Bandwidth			
CPU	Clock speed; Instructions executed/clock			
Memory	Access time (nanoseconds); bus bandwidth			
Rotating Disk	Access time (milliseconds)			
Solid State Disk	Access time (microseconds)			
Network adapter	Bandwidth; Latency			

• Consider a computer servicing requests at a rate = 13,680 /hour

Disk	Reads/sec	Writes/sec	IOPS	Utilization
1	24	8	32	0.30
2	28	8	36	0.41
3	40	10	50	0.54

• Consider a computer servicing requests at a rate = 13,680 /hour

Disk	Reads/sec	Writes/sec	IOPS	Utilization
1	24	8	32	0.30
2	28	8	36	0.41
3	40	10	50	0.54

Calculate the average service time at each disk...

• Consider a computer servicing requests at a rate = 13,680 /hour

Disk	Reads/sec	Writes/sec	IOPS	Utilization
1	24	8	32	0.30
2	28	8	36	0.41
3	40	10	50	0.54

average service time = utilization / thruput

• Consider a computer servicing requests at a rate = 13,680 /hour

Disk	Reads/sec	Writes/sec	IOPS	Utilization	Ave Service Time (ms)
1	24	8	32	0.30	9.4
2	28	8	36	0.41	11.4
3	40	10	50	0.54	10.8

average service time = utilization / thruput

Assuming that the load on each device grows as a *linear function* of the Request rate:

When Disk 3, saturates, the system is at its maximum capacity

Upper bound on throughput under heavy load

Disk 3 is the bottleneck device

What happens when you replace Disk 3 with a faster SSD?

Disk 2 becomes the next *bottleneck* device

Bottleneck analysis

- 1. Find the bottleneck device and fix, improve or remove it.
- 2. Increase the workload until another bottleneck emerges
- 3. Repeat Step 1
- **Decomposition**: break down Request processing into smaller sub-components whose performance you can also measure
 - Bottlenecks are not always hardware components
 - Not all subcomponents are instrumented
 - Linear scaling is seldom achievable

Response Time

- Whenever there are multiple customers issuing independent Requests for service to the *same* server (or resource), there is the possibility of *contention*.
- When a Request encounters a busy server, the Request is (usually) queued for service.

$$R = \overline{W}_s + \overline{W}_q$$

Response Time = mean Service Time + mean Queue Time

SPE: Foundations

Queue Time

- Independent requests for service from a shared resource lead to contention
- The amount of contention is a function of
 - how busy the server is
 - variability in the arrival rate of requests
 - variability in the service time
- A Request that encounters a busy server is queued

Queue Time

• Elements of a queueing system

- Arrivals
- Completions
- Server
- Queue

Response Time

=

Queue Time

+

Service Time

Queue Time

- How long a Request that is queued waits is a function of
 - # of Requests already waiting &
 - the service times of those Requests

- Familiar examples of queueing systems
 - Fast Food restaurant
 - Customs check at a border crossing
 - Company cafeteria at lunch time
 - Waiting for a bus or a ferry ride
 - Checking in at an airport
 - Checking out of a supermarket

Generalized Birth-Death Markov Models

Generalized Birth-Death Markov Models (Erlang)

utilization = $1 - P_0$ throughput = $\sum_{k=1}^{\infty} \mu_k P_k$ queue length = $\sum_{k=1}^{\infty} k P_k$

Generalized Birth-Death Markov Models (Erlang)

- Intuitively,
 - How long a customer waits for a service in a Queue is a function of:
 - · the customer's position in the queue
 - · service times for the Requests of customers ahead of you in the

Types of Queues

Single Server

Multiple Servers

Multiple classes of service

Ser ver

Queueing discipline:
 FCFS, round-robin or priority

Little's Law

- Equivalence relationship involving
 - L, the average number of customers waiting in a queueing system
 - .i.e., the Queue length
 - $-\lambda$, the rate customers arrive to request service
 - \Rightarrow assume λ = C, the completion rate (the *equilibrium* assumption)
 - W, the average amount of time customers wait in the system
 - ❖ i.e., the Response Time

$$L = \lambda * W$$

Little's Law

$$L = \lambda * W$$

- N, the number of customers in the system = Throughput * Response Time
- Common applications of Little's Law include measuring two
 of the variables and calculating the 3rd term

Little's Law

$$L = \lambda * W$$

- Example
 - A Fast Food restaurant takes orders from 720 customers/hour during lunch. Processing an order takes an average of 90 seconds. How big does the waiting room need to be?
 - $^{\circ}$ N = (720 / 3600) * 90 = 0.2 * 90 = 15 customers

Assignment

- Prove Little's Law
 - Due prior to class next week.

Class exercise

- Navigate to the PDQ (Pretty Damn Quick) info page
- PDQ Software Distribution page
- and follow the instructions to install the PDQ library for use with Perl, Python, C or R
 - http://www.perfdynamics.com/Tools/PDQcode.html
 - open source: see https://sourceforge.net/projects/pdq-qnm-pkg/
- Test your install by executing the sample script at <u>section 4.2</u> (PDQ Model in Perl)

Queueing Models

- In general, use Markov chains to characterize a queueing system based on
 - the Arrival rate distribution
 - the Service time distribution
 - the number of servers
 - Notation:

M/M/1 Queue

- The arrival rate is exponential
- The service time is exponential
- 1 server
- What is an exponential distribution?
 - probability density function = $\lambda e^{-\lambda x}$
 - mean = standard deviation = $1/\lambda$
 - memoryless

Normal vs. Poisson distributions

Normal

Poisson

M/M/1 Queue

Formulas

$$|N| = p/1-p$$

$$RT = \frac{S}{1-p}$$

- where p is the probability the server is busy
- (Note: ρ = utilization)

M/M/1 Queue

$$RT = \frac{S}{1-p}$$

- Calculate RT, if the average service time and the server utilization are known
 - Note: $S = u / \lambda$, from the Utilization Law
- How realistic are the assumptions?
 - exponential arrivals:
 - are arrivals independent?
 - is the mean \cong standard deviation?
 - exponential service time

e.g.,

Calculate RT for disks with mean service time = 5-25 ms.

SPE: Foundations

Response Times (M/M/1)

Discussion

- 1. What is the shape of the m/m/1 response time distributions?
- 2. When does a gradual quantitative change manifest a qualitative change?
- 3. What happens when u = 1?
- 4. When is RT = 2 * S
- 5. Is there a "knee" of the RT curves?

M/M/1 Queue

- Queueing theory is useful because it models actual system behavior!
 - e.g., Erlang
 - $^{\text{\tiny I}}$ When a bottleneck device nears its saturation point, small changes in λ cause large changes in performance.

- λ increases by a factor of x
- substitute a faster server for bottleneck y
- model the performance of several proposed solutions without having to build them

Note: the mathematics breaks down as $\mathbf{u} \Rightarrow \infty$

Heavy traffic approximations

Strategies for reducing Queue Time

- Reduce the variability in the arrival rate
 - Improved scheduling
 - Independent arrivals?
- Improve the service time
 - faster devices; leaner code
- Reduce the variability in the service time
 - M/D/1 compared to M/M/1 has 50% less queueing
 - "D" stands for a deterministic distribution; i.e., sd << mean

Reducing Queue Time

- Reduced variability in the service time distribution
 - M/D/1
 - · sd << mean
 - e.g.,
 - time-slicing for sharing processors
 - packet-switching in networks

Break large requests into a sequence of smaller, uniformed- size Request packets

Strategies for reducing Queue Time

- Multiple servers
 - M/M/n
 - If all service requests can be processed at any available server
 - p, the probability that the Request will encounter a busy server is the joint probability that all n servers are busy

$$\rho = u^n$$

approximately:

$$RT = \frac{S}{1-p}^n$$

Queuing disciplines

- First Come, First Serve or First In, First Out
 - (FCFS or FIFO)
- Last In, First Out (LIFO)
 - stack
- Time-slicing (Fair)
 - reduces variability in the service time distribution
- Priority (unfair)
 - priority queuing with preemptive scheduling
 - introduces the possibility of starvation, deadlocks

M/G/1

- Service time distributions are less likely to be exponential
 - e.g., Memory access time is constant (M/D/1)
 - e.g., access time of a memory hierarchy (with cache) is bi-modal
 - "G" = general (in effect, any service time distribution)
- Fortunately, there is the PK (Pollaczek-Khinchine) mean value equation:

$$RT = S + \frac{pS(1 + C_s^2)}{2(1-p)}$$

where C_s is the Coefficient of Variation (CoV) of the service time

M/G/1

PK (Pollaczek-Khinchine) mean value equation:

$$RT = S + \frac{pS(1 + C_s^2)}{2(1-p)}$$

where C_s is the Coefficient of Variation (CoV) of the service time

- CoV = σ_s / S
- Deriving the PK mean value equation requires a more accurate assumption about queue time than we have been using so far
 - namely, that a Request that finds a server is busy on average waits only S/2 for the active Request to complete

PK (Pollaczek-Khinchine) mean value equation:

$$RT = S + \frac{pS(1 + C_s^2)}{2(1-p)}$$

where C_s is the Coefficient of Variation (CoV) of the service time

Useful whenever C >> 1 (e.g., bi-modal, due to cache)

PK (Pollaczek-Khinchine) mean value equation:

$$RT = S + \frac{pS(1 + C_s^2)}{2(1-p)}$$

where C_s is the Coefficient of Variation (CoV) of the service time

When C >> 1, Queue time increases more rapidly than M/M/1

G/G/1

- any arrival rate distribution
- any service time distribution
- no practical formulas exist to solve the G/G/1 case!

PK (Pollaczek-Khinchine) mean value equation:

$$RT = S + \frac{pS(1 + C_s^2)}{2(1-p)}$$

- To enable your component so that Queue times can be calculated, what measurements should you gather?
 - count the arrivals
 - accumulate (i.e., sum) the service time, S
 - accumulate the service time squared, S²
- Report λ , Sum[S], and Sum[S²] each measurement Δ to calculate the service time mean and sd for that corresponding interval
- or measure Queue time (or Response time, since Q = R S) directly

Open and Closed network models

- Applications requiring more than 1 resource can be modeled as a network (or circuit) of resources and their queues:
 - system resources: CPU, disks, network interface, etc.
 - arrival rates, service times: visits
 - multiple classes of workloads (different arrival rates, service rates, priorities)
 - multiples of systems
- Closed models impose a limit n, on the number of concurrent customers
 - Closed network queueing models were used to model interactive workloads on large scale mainframe computers with a fixed number of attached terminals
 - · e.g., an internal computer system serving a bank and its workers

Closed network queueing model

e.g., a Web Server

 $\lambda = RT + Think Time$

Open and Closed network models

- Closed models impose a limit n, on the number of concurrent customers
 - When a bottlenecked resource in a closed model saturates, the maximum Q_{len} that can be observed is limited to *n-1*
- In contrast, Open models draw customers from an infinite source, λ remains constant, so the maximum Q_{len} is ∞

n customers

Closed network queueing model

- When there is a bottlenecked resource, the model shows the Q_{len} elongates and customers are "stuck" in the system
- This dampens the arrival rate for new service Requests, since the number of customers is fixed
- Corollary: RT is optimal when resources are lightly loaded and queueing delays are minimal

Closed network queueing model

- A balanced system where all resource Queue Times are approximately equal is the optimal configuration
- No bottleneck!
- Corollary: load balancing is an optimal solution to most queueing circuits

Modern connected applications

- Multiple tiers
 - Cloud-based
 - TCP Connection management
 - Web servers/services
 - Middleware
 - Database back-end(s)
 - File servers
 - Storage Area Networks
 - Virtualization
 - Edge networks
 - e.g., Content Delivery Network (CDN)

Modern connected applications

Complications

- Individual tiers/components have incomplete and/or inconsistent instrumentation
- Synchronous vs. asynchronous calls (apparent Response times vs. actual Response times)
- Are measurements taken across Callers & Providers correlated?
 - i.e., web service ⇒ DBMS
- Caches ⇒ bi-modal service time distributions
 - report Hit ratios
 - break out service times for Hits/Misses separately


```
use pdq;
                                        Perl & PDQ sample
# Globals
$arrivRate = 0.75;
$servTime = 1.0;
pdq::Init("Open Network with M/M/1");
pdq::CreateOpen("Work", $arrivRate);
pdq::CreateNode("Server", $pdq::CEN, $pdq::FCFS);
pdq::SetDemand("Server", "Work", $servTime);
# Solve the model
pdq::Solve($pdq::CANON);
pdq::Report();
```

Perl & PDQ sample

- Extend the simple sample:
 - add a loop in Perl that increases the arrival rate variable until the "Server" resource saturates
 - add additional secondary resources: disk, DBMS, network, etc.
 - add additional servers
 - model the network latency between servers as a delay server (no queueing)

Open and Closed models

- Closed models assume a limit n, on the number of concurrent customers
 - requires the equilibrium assumption
 - $^{\rm o}$ When a bottlenecked resource in a closed model saturates, the maximum $Q_{\rm len}$ that can be observed is limited to $\emph{n-1}$
- Open models draw customers from an infinite source, so the maximum Q_{len} is ∞
 - the potential number of customers for some connected web-based applications is so large that Open models can apply
 - when arrival rates remain steady, even where there is contention!
- Heavy-traffic approximations: $u \Rightarrow \infty$

Limitations of closed network models

- Separability*
 - must be able to be solve models for individual nodes separately, which are then combined (Product-Form solution)
 - Service policies:
 - FIFO or FCFS
 - Round robin
 - Delay (no queueing behavior)
 - Priority queuing with preemptive scheduling (approximations)
 - Exponential service times
 - □ Flow balance $(\lambda = C)$
 - * BCMP (Baskett, Chandy, Muntz & Palacios, 1975)

Limitations of closed network models

- see Gunther, ch. 3.
 - Bulk arrivals (in general, anytime $\lambda \neq C$)
 - non-exponential service times
 - Blocking, Mutual exclusion (locking)
 - Mutual exclusion
 - Queuing defections
 - Fork/Join
- There are clever ways around most of these limitations
 - Load-dependent servers
 - Priority queueing (with preemptive scheduling)

```
use pdq;
$model
          = "Middleware";
$work
          = "eBiz-tx";
$node1
          = "WebServer";
$node2
          = "AppServer";
          = "DBMServer";
$node3
          = "DummySvr";
$node4
          = 0.0 * 1e-3; # treat as free param
$think
$users
          = 10;
pdq::Init($model);
pdq::CreateNode($node1, $pdq::CEN, $pdq::FCFS);pdq::CreateNode($node2, $pdq::CEN, $pdq::FCFS);
pdq::CreateNode($node3, $pdq::CEN, $pdq::FCFS);
pdq::CreateNode($node4, $pdq::CEN, $pdq::FCFS);
pdq::CreateClosed($work, $pdq::TERM, $users, $think);
# NOTE: timebase is seconds
pdq::SetDemand($node1, $work, 9.8 * 1e-3);
pdq::SetDemand($node2, $work, 2.5 * 1e-3);
pdq::SetDemand($node3, $work, 0.72 * 1e-3);
pdq::SetDemand($node4, $work, 9.8 * 1e-3);
pdq::Solve($pdq::EXACT);
pdq::Report();
```

Perl & PDQ sample

Analytic queuing models: an Assessment

- Because they mimic the actual behavior of computer applications, queuing models inform much of computer performance analysis
 - relationship between response time & unitization is nonlinear

QT > ST, if
$$u > .50$$
 (m/m/1)

- Scheduling algorithms that reduce variability in the service time distribution help
 - multiple service classes (minimally: foreground : background)
 - time-slicing; avoiding starvation
 - packet-switching in networks
 - should routers queue requests when a server along the route is busy?

Analytic queuing models: an Assessment

 Because they mimic the actual behavior of computer applications, queuing models inform much of computer performance analysis

- Model building & validation
 - Train them on available measurement data can the model accurately predict observed performance?
 - validation step often reveals the need for missing data or uncovers hidden sources of resource contention
 - Exact solution vs. more tractable approximation methods
 - What if? predictive scenarios
 - · impact of new equipment that runs faster
 - · impact of adding load to model customer growth

Analytic queueing models: an Assessment

- Practical "guerilla" approach to using analytic models
 - emphasize results; de-emphasize time-consuming model validation
 - e.g., Model the application before you build it
 - PDQ library is programmable
- Bottleneck analysis
 - Required for intelligent alerting, automatic provisioning
- Alternatives to analytic models
 - □ discrete-event simulation (see <u>SPE*ED</u>: UML ⇒ model)
 - trace-driven simulation

Additional References

- Ed Lazowska, et. al., Quantitative System Performance, 1984.
- Neil Gunther, *The Practical Performance Analyst*, 1998.
- Daniel Menascé, et. al., Performance By Design, 2004.