Foundations:
Operational Analysis and Queuing Models

Software Performance Engineering: Theory & Practice

SPE: Foundations 5/26/2018

Outline

 Operational Analysis
= Utilization Law
= Little’s Law
- Bottleneck analysis

 Queuing models
= Open models
- M/M/1;M/M/n; M/D/1; M/G/1; G/G/1
= Closed Network models

SPE: Foundations 5/26/2018

Analytic modeling of computer system performance

e Prediction = Capacity planning
= Qut-of-Capacity conditions can be catastrophic

- Performance is usually cited as the 2" most important factor related to user
satisfaction

« Finite limits on computing resources
= Understand queueing behavior when resources saturate

« Analytic methods:
- Bottleneck analysis for current systems
= Compare design alternatives for new application development

SPE: Foundations 5/26/2018

Historical Development

« The 15t generation of computers (~1960) that used semiconductor
technology led to rapid expansion of the field of Computer Science

= 1BM 360
- timesharing - required cost accounting based on resource usage

- Similarity between computerized task scheduling algorithms and
optimizations familiar from Operations Research

= e.g., see Donald Knuth, “The Art of Computer Programming:
Fundamental Algorithms,” first published in 1968.

- Instrumentation added to assist with fine-tuning these algorithms

SPE: Foundations 5/26/2018

Historical Development

- Early computers were not only expensive, but they were slow (by
today’s standards)

- these limitations inspired intense interest in performance
- e.g., Sort algorithms

» Cost accounting in early fime-shared systems that ran batch jobs
required instrumentation:
= execution time + queueing = turnaround time

= resource consumption
- CPU time
- 10s to peripherals (disk, tape)
» lines printed
- etc.

SPE: Foundations 5/26/2018

Historical Development: References

* Leonard Kleinrock, Queving Systems: Volume Il - Computer
Applications, 1976.

* Peter Denning and Jeff Buzen, “The Operational analysis of queuing
network models,” Computing Surveys, 1978.

- Ed Lazowska, et. 3L, Quantitative System Performance, 1984.

 Connie Smith, Performance Engineering of Software Systems, 1990.

o
1
@ I B T . N T S I T S S S S S S S R
o
S,
0 .0..
ol ® o
— ®ee,
LN e,
QAe
°e,
\\\\\\\\\\\\\\\\\\\\\\\ g — T —i— B e
S %o
- ¢
S B
s
_m \\\\\\\\\\\\\\\\\\\\\\\\\\\\\ F RS S S S S B S
-8 .
B [J
a °
°
w» °
®
Y 4
: 8
.
°
°
°
°
o - Lo BUNUNES T S S S P S o . ' __]
© °
- .
- £ .
® nhv °
® o <
1 e ey e R D e
o X 4
(Y) Q °
~ °
~ °
~ °
°
L i U S S S PSR o]
®
'
°
°
°
°
(=] m m (=]
w N -
- ® ® O 0 & »n O R =) Amsv

Scalability

SPE: Foundations 5/26/2018

Scalability

- Why does actual performance
diverge from the ideal?
- Computer resources have finite
capacity limits
= As the workload grows, these
limits eventually become manifest

- Concurrent requests for shared
resources generates contention

- e.g., processor sharing:
- time-slicing
* priority

.
°
e°*
QP..
+ °
ooooooooooooooooo

SPE: Foundations 5/26/2018

300 : ‘
Algorithm 4 W o
® | —Cfonstant i ‘ : i/ :
complexity | [T i
e | 7 l g .
(scalability) : XX ::(gp:nential 1 ° / :
0 200 ; ; ; : | / : ..
: REPZ A
e i ‘ | e | H ‘ ‘
?) /7 3 :.° 3 3
e 100 | l ./' o : --}P---;---
m ‘__/_—«-——"""".'."'b"""“' |
,l : 7 | ...’.....o
Rosfovooocoece?
o M ° 2 l 2 ? | | 2 | ?
n

SPE: Foundations 5/26/2018

Operational analysis

 Notation
o T s

the length of time or duration of the observation period
the set of computer resources: CPUs, disks, etc.

total busy time of resource K, during observation period 7
service requests to resource K; during period7

Total requests (arrivals) during period 7

service requests completed at resource K; during period 7
Total requests completed (completions) during period 7

SPE: Foundations 5/26/2018

 Basic Equations

oPel'athﬂal 3ﬂaly3|3 = mean service time at resource K;
. - §,=B,/C,
- Notation - utilization of resource K,
= T :the length of time or duration of the - U.=B. / T
observation period 1 .
= K : the set of computer resources: CPUs, disks, etc. : throughput (completlons) at
= B, : total busy time of resource K, during resource K; during T
observation period 7 - X.=C. / T
I I

= A, : service requests to resource K; during period7

= A, : Total requests (arrivals) during period 7 ° iy the arrival rate at resource K,

- C,: service requests completed at resource K; during 7
during period 7 - A=A, / T
= C,: Total requests completed (completions) during]
period T system thruput

- Xp=C,/ T
= Visits per request at resource K;
’ yi=ci/ C,

SPE: Foundations 5/26/2018

 Basic Equations

Operational analysis . mean service time at resource K,
+ §,=B,/C,
» Example: = utilization of resource K;

= T =60 seconds - U,=B,/T

> K=1 resource = throughput (completions) at

= B, = 36 seconds resource K, during 7

= A; = A, = 1800 requests - X,=C,/ T

= €;=C,=1800 requests = \; , the arrival rate at resource K;
during 7
WY WA |

= system thruput

- X,=C,/ T

= Visits per request at resource K;
V= ci/ C,

SPE: Foundations 5/26/2018

Operational analysis

 Example:
= T=60 seconds
= K =1 resource
= B, =36 seconds
= Ay = A, =1800 requests
= €, =C,=1800 requests

S, =B, /C,=36/1800 = 20 ms.

U =B,/ T=36/60=60%
A=A,/ T=1800 / 60 =30/sec
C.,=C,/T=1800/ 60 =30/sec

 Basic Equations

= mean service time at resource K;
* §;= Bi/ C

- utilization of resource K;
- U,=B,/ T

= throughput (completions) at
resource K during 7
- X,=C,/ T

s \; , the arrival rate at resource K;
during 7
VY WA |

= system thruput
- X,=C,/ T

= Visits per request at resource K;
V= ci/ C,

SPE: Foundations 5/26/2018

Utilization Law:
U= A *x §

- Service time is also frequently called the average /atency

- Utilization (% busy) is a value between 0 and 1.
- no device can be utilized more than 100%

= @ device can be driven to 100% utilization if it is
(carefully) scheduled...

Utilization Law

SPE: Foundations 5/26/2018

» Consider the problem of copying a file from
one disk to another as fast as possible...

e Goal: Drive disk utilization =100%

Buffer
Pool

Reader Thread

File System

Writer Thread

“-

Utilization Law
- What if you are copying a file from one disk to a location in

the cloud...

- How many buffers are needed?
- What synchronization is required?

Buffer
Pool

SPE: Foundations 5/26/2018

Reader Thread

File System

0

1

4

c

N\

)

: At

Writer Thread
/MH\

Utilization Law

- In general, what if the Reader and Writer speeds are

mis-matched?

7 €Ly
- streaming video

Address
Status
Lock word

Buffer

Pool

l

SPE: Foundations 5/26/2018

sizeOf(#buffers)

—H BufferStatusArray

Reader Thread

0

2

- plus, use a circular buffer

to save space in memory

Writer Thread :’ Q

SPE: Foundations 5/26/2018

Capacity

. Since no device can be utilized more than 100%, at (or near) 100%
utilization, a resource has reached its capacity limit.
= Throughput
- Bandwidth

- Consider some common types of computer hardware and their finite
capacity limits:
> Processor (CPU)
= Memory
= Disk
- Network adapter/endpoint

SPE: Foundations 5/26/2018

Capacity

- Computer resources have finite capacity limits:

Component Performance, Capacity, or Bandwidth
CPU Clock speed; Instructions executed/clock
Memory Access time (nanoseconds); bus bandwidth
Rotating Disk Access time (milliseconds)

Solid State Disk Access time (microseconds)

Network adapter Bandwidth; Latency

SPE: Foundations 5/26/2018

Bounds on performance

- Consider a computer servicing requests at a rate = 73,680 /hour

Dt e s _iors__btaton

0.30
2 28 3 36 0.41
3 40 10 50 0.54

SPE: Foundations 5/26/2018

Bounds on performance

- Consider a computer servicing requests at a rate = 73,680 /hour

Dt e s _iors__btaton

0.30
2 28 3 36 0.41
3 40 10 50 0.54

« Calculate the average service time at each disk...

SPE: Foundations 5/26/2018

Bounds on performance

- Consider a computer servicing requests at a rate = 73,680 /hour

Dt e s _iors__btaton

0.30
2 28 3 36 0.41
3 40 10 50 0.54

- average service time = utilization / thruput

SPE: Foundations 5/26/2018

Bounds on performance

- Consider a computer servicing requests at a rate = 73,680 /hour

Reads/sec | Writes/sec Ave Service
Time (ms)

0.30
2 28 3 36 0.41 11.4
3 40 10 50 0.54 10.8

- average service time = utilization / thruput

SPE: Foundations 5/26/2018

Bounds on Performance
--Disk 1 -#-Disk 2 -#-Disk 3

=

Assuming that the
load on each device
grows as a linear
function of the
Request rate:

Utilization
(@] (@] (@] (@] o o o o
v W O~ U o 9 o o

\

o

0 1 2 3 4 5 6 7 8
Requests/sec

When Disk 3,
saturates, the
system is at its
maximum capacity

[N

ot
©

o
)

o
N

o
o

Upper bound on
throughput under
heavy load

Utilization
o o o
w N w

o
N

Disk 3 is the
bottleneck device

o
[EY

o

SPE: Foundations 5/26/2018

Bounds on Performance
--Disk 1 -#-Disk 2 -#-Disk 3

2 3 4 5
Requests/sec

What happens when
you replace Disk 3
with a faster SSD?

[N

ot
©

o
)

Disk 2 becomes the
next bottleneck
device

Utilization
o (@) o o o (@] o
O O

o

SPE: Foundations 5/26/2018

Bounds on Performance
--Disk 1 -#-Disk 2 -#-Disk 3

2 3 4 5
Requests/sec

SPE: Foundations 5/26/2018

Bottleneck analysis

1. Find the bottleneck device and fix, improve or remove it.
2. Increase the workload until another bottleneck emerges
3. Repeat Step 1

Decom position: break down Request processing into smaller
sub-components whose performance you can also measure

- Bottlenecks are not always hardware components
= Not all subcomponents are instrumented
= Linear scaling is seldom achievable

SPE: Foundations 5/26/2018

Response Time

« Whenever there are multiple customers issuing independent
Requests for service to the same server (or resource), there is the
possibility of contention.

- When a Request encounters a busy server, the Request is (usually)
queued for service.

R= W, +W,

Response Time =
mean Service Time + mean Queue Time

SPE: Foundations 5/26/2018

Queue Time

- Independent requests for service from a shared
resource lead to contention

o The amount of contention is a function of

= how busy the server is
- variability in the arrival rate of requests
= variability in the service time

* A Request that encounters a busy server is queued

SPE: Foundations 5/26/2018

Queue Time

- Elements of a queueing system

= Arrivals Arrivals
= Completions
- Server

> Queue -

Completions

Response Time

Queue Time | + | Service Time

SPE: Foundations 5/26/2018

Queue Time

- How long a Request that is queued waits is a function of

= # of Requests already waiting &
= the service times of those Requests R

- Familiar examples of queueing systems
- Fast Food restaurant
= Customs check at a border crossing
= Company cafeteria at lunch time
= Waiting for a bus or a ferry ride
= Checking in at an airport
= Checking out of a supermarket

SPE: Foundations 5/26/2018

Generalized Birth-Death Markov Models

SPE: Foundations 5/26/2018

Generalized Birth-Death Markov Models (Erlang)
utilization=1 - P,
throughput=>." u, P,
queue length=)"_, kP,

" N

Uy K, s

SPE: Foundations 5/26/2018

Generalized Birth-Death Markov Models (Erlang)

* Intuitively,

- How long a customer waits for a service in a Queue is 3
function of:
- the customer’s position in the queue
- service times for the Requests of customers ahead of you in the

T U YR
@

" N

Uy K, s

SPE: Foundations 5/26/2018

Types of Queues

- Single Server mm)

- Multiple Servers

- Multiple classes of service

=)
=N

* Queueing discipline:
FCFS, round-robin or priority ™

SPE: Foundations 5/26/2018

Little’s Law

» Equivalence relationship involving

= L, the average number of customers waiting in a queueing system
“ i.e., the Queue length

=), the rate customers arrive to request service
< assume A = C, the completion rate (the equilibrium assumption)

= W, the average amount of time customers wait in the system
% i.e., the Response Time

L=\L"W

SPE: Foundations 5/26/2018

Little’s Law
L=\"W

* N, the number of customers in the system
= Throughput * Response Time

- Common applications of Little’s Law include measuring two
of the variables and calculating the 3" term

SPE: Foundations 5/26/2018

Little’s Law
L=\"W

« Example

- A Fast Food restaurant takes orders from 720 customers/hour
during lunch. Processing an order takes an average of 90
seconds. How big does the waiting room need to be?

- N=(720 / 3600) * 90 = 0.2 * 90 = 15 customers

SPE: Foundations 5/26/2018

Assignment

*Prove Little’s Law
- Due prior to class next week.

SPE: Foundations 5/26/2018

Class exercise

- Navigate to the PDQ (Pretty Damn Quick) info page

- PDQ Software Distribution page

- and follow the instructions to install the PDQ library for use with
Perl, Python, C or R
= http:/ /www.perfdynamics.com/Tools/PDQcode.html
= open source: see https://sourceforge.net/projects/pdq-qnm-pkg/

- Test your install by executing the sample script at section 4.2 (PDQ
Model in Perl)

http://www.perfdynamics.com/Tools/PDQ.html
http://www.perfdynamics.com/Tools/PDQcode.html
https://sourceforge.net/projects/pdq-qnm-pkg/
http://www.perfdynamics.com/Tools/PDQ.html

SPE: Foundations 5/26/2018

Queucing Models

- In general, use Markov chains to characterize a queueing system
based on

= the Arrival rate distribution
- the Service time distribution
= the number of servers

o Notation:

G/G/n

SPE: Foundations 5/26/2018

M/M /1 Q“eue Probaility Density function (pdf)

for representative Exponential Distributions (1)

e The arrival rate is exponential
- The service time is exponential B EpE——
« 1 server

0.6

p(x)

- What is an exponential distribution?

0.2

m]

probability density function = A e ¥
mean = standard deviation = 1/\
memoryless T

O

O

O

models the time between arrivals in a Poisson process
(i.e., independent, randomly-occurring discrete events)

right-hand exponential

https://en.wikipedia.org/wiki/Poisson_distribution

SPE: Foundations 5/26/2018

Normal vs. Poisson distributions

Normal Poisson

Normal Distribution (pdf)

mean = 0; s.d. =1 . L .
: Poisson distributions

p 0.4
0.5
o for different values of lambda
03 04 =] ==3 ==5 10
i 03
0.2
: 02
01 : : :
01
0 : . ;
R 1 0 1 2 3 4 \
DT > . e~
95.4% - 0 2 4 6 8 10 12 14 16 18 20

SPE: Foundations 5/26/2018

Cumulative distribution
M/M/1 Queue

for representative Exponential Distributions (A)

S

memoryless

a s "

 Formulas

0.8

N = p/l—p

0.4

"RT = 5/;_,,

—05 —1 —15 |

p(x)

= where pis the probability the server
is busy

- (Note: p = utilization)

SPE: Foundations 5/26/2018

M/M/1 Q“e“e Response Times (M/M/1)

-5 =10 -15 20 —25

RT = S/l—p

« Calculate RT, if the average service time
and the server utilization are known :

0 0.2 0.4 0.6 0.8 1

Utilization

- Note: $ =u / A, from the Utilization Law

 How realistic are the assumptions? e.g.
= exponential arrivals:
- are arrivals independent? Calculate RT for disks with
- is the mean = standard deviation ? mean service time = 5-25 ms.

= exponential service time

SPE: Foundations 5/26/2018

Response Times (M/M/1)

‘ -5 —-—10 —15 20 25 l

100

Discussion

80 1. What is the shape of the

m/m/1 response time

distributions?
60

2. When does a gradual
quantitative change
manifest a qualitative
change?

40

20
3. What happens whenu =17

0 4. WhenisRT=2"S$
0 0.2 0.4 0.6 0.8 1

Utilization 5. Is there a “knee” of the RT
curves?

SPE: Foundations 5/26/2018

M/M/1 Q“e“e Response Times (M/M/1)

-5 -10 -15 20 —25

» Queuecing theory is useful because it
models actual system behavior!
- e.g., Erlang
- When a bottleneck device nears its

saturation point, small changes in A cause
large changes in performance.

~

Utilization

- Answer “What if...?” questions
- A increases by a factor of x Note: the mathematics breaks
- substitute a faster server for bottleneck y down as u >

- model the performance of several proposed
solutions without having to build them Heavy traffic approximations

SPE: Foundations 5/26/2018

Strategies for reducing Queue Time

Response Times (M/M/1)

* Reduce the variability in the arrival rate = w0 5w %
- Improved scheduling
- Independent arrivals?

- Improve the service time
= faster devices; leaner code

Utilization

* Reduce the variability in the service time
- M/D/1 compared to M/M/1 has 50% less
queueing
= “D” stands for a deterministic
distribution; i.e., sd << mean

SPE: Foundations 5/26/2018

Reducing Queue Time

* Reduced variability in the
service time distribution
- M/D/1
- 8d << mean

2 €.8.,
- time-slicing for sharing
processors
- packet-switching in networks

Probaility Density function (pdf)
for representative Exponential Distributions (1)

08 | 05 =—1 =15 I

0.6

p(x)

Break large requests into a sequence of

smaller, uniformed- size Request packets

SPE: Foundations 5/26/2018

Strategies for reducing Queue Time

° Multiple servers N Response Times (M/M/1)
. M/M/ﬂ . ~5 ~10 ~15 -20 —25

= If all service requests can be processed at
any available server

= p, the probability that the Request will | ution

encounter a busy server is the joint ————
probability that all 7 servers are busy approximately:
— S n
RT = °/1-

p=u"

SPE: Foundations 5/26/2018

Queuing disciplines

« First Come, First Serve or First In, First Out
= (FCFS or FIFO)
- Last In, First Out (LIFO)
= stack
» Time-slicing (Fair)
= reduces variability in the service time distribution
» Priority (unfair)
= priority queuing with preemptive scheduling
= introduces the possibility of starvation, deadlocks

SPE: Foundations 5/26/2018

M/G/1

- Service time distributions are less likely to be exponential
= e.g., Memory access time is constant (M/D/1)
= e.g., access time of a memory hierarchy (with cache) is bi-modal

- “G” = general (in effect, any service time distribution)

- Fortunately, there is the PK (Pollaczek-Khinchine) mean value equation:

pS(1+ C2)
2(1-p)

where C, is the Coefficient of Variation (CoV) of the service time

RT = 8§ +

SPE: Foundations 5/26/2018

M/G/1

PK (Pollaczek-Khinchine) mean value equation:
pS(1+ C%)

2(1-p)

where C, is the Coefficient of Variation (CoV) of the service time

RT = § +

«CoV=05,/5S

+ Deriving the PK mean value equation requires a more accurate
assumption about queue time than we have been using so far

- namely, that a Request that finds a server is busy on average waits only S/2
for the active Request to complete

SPE: Foundations 5/26/2018

PK (Pollaczek-Khinchine) mean value equation:
pS(1+ C?)

2(1-p)

RT =S +

where C, is the Coefficient of Variation (CoV) of the service time

- Useful whenever C >> 1 (e.g., bi-modal, due to cache)

e

Wey

SPE: Foundations 5/26/2018

PK (Pollaczek-Khinchine) mean value equation:
pS(1+ C?)

RT =S +
2(1-p)

where C, is the Coefficient of Variation (CoV) of the service time

« When C >> 1, Queue time increases more rapidly than M/M/1

Wey

SPE: Foundations 5/26/2018

G/G/1

- any arrival rate distribution
- any service time distribution

- no practical formulas exist to solve the G/G/1 case!

SPE: Foundations 5/26/2018

PK (Pollaczek-Khinchine) mean value equation:
pS(1+ C?)

RT =S +
2(1—-p)

- To enable your component so that Queue times can be calculated,
what measurements should you gather?

= count the arrivals
- accumulate (i.e., sum) the service time, S
- accumulate the service time squared, $2

« Report 2, Sum[S], and Sum[$?] each measurement A to calculate the
service time mean and sd for that corresponding interval

« or measure Queue time (or Response time, since Q =R - S) directly

SPE: Foundations 5/26/2018

Open and Closed network models

- Applications requiring more than 1 resource can be modeled as a network
(or circuit) of resources and their queues:
= system resources: CPU, disks, network interface, etc.
= grrival rates, service times: visits
= multiple classes of workloads (different arrival rates, service rates, priorities)
= multiples of systems

+ Closed models impose a limit 2, on the number of concurrent customers

= Closed network queueing models were used to model interactive workloads on
large scale mainframe computers with a fixed number of attached terminals
- e.g., an internal computer system serving a bank and its workers

SPE: Foundations 5/26/2018

Closed network queucing model

e.g., 3 Web Server

A = RT + Think Time

SPE: Foundations 5/26/2018

Open and Closed network models

» Closed models impose a limit n,
on the number of concurrent
customers

= When a bottlenecked resource in 3
closed model saturates, the
maximum Q,., that can be

g RN

observed is limited to n-7 DX @@ »[]
DR
* In contrast, Open models draw \@Q_
customers from an infinite
source, .. remains constant, so the n customers

maximum Q,_,, is

SPE: Foundations 5/26/2018

Closed network queucing model

« When there is a bottlenecked
resource, the model shows the
Q,., elongates and customers are
“stuck” in the system

- This dampens the arrival rate for
new service Requests, since the
number of customers is fixed

e Corollary: RT is optimal when
resources are lightly loaded and
queueing delays are minimal

SPE: Foundations 5/26/2018

Closed network queucing model

* A balanced system where all
resource Queue Times are
approximately equal is the
optimal configuration —

* No bottleneck!

« Corollary: load balancing is an B\E\§\ .
optimal solution to most *ESE@._
queueing circuits g

SPE: Foundations 5/26/2018

Modern connected applications

« Multiple tiers
= Cloud-based NQ = B8 e cachelayer
- TCP Connection management @J amE o
- Web servers/services ol - Tt
= Middleware
- Database back-end(s)

File servers
= Storage Area Networks - '
. Vil'tllalilati()ll Databa;e | Web services File Servers

(m}

|
= Edge networks L ===_

- e.g., Content Delivery Network (CDN) _PEEE

Middleware

SPE: Foundations 5/26/2018

Modern connected applications

- Complications D

= Individual tiers/components have N EEE i

incomplete and/or inconsistent Q Q i T on
instrumentation =

= Synchronous vs. asynchronous calls
(apparent Response times vs. actual
Response times)

= Are measurements taken across
Callers & Providers correlated?
- i.e., web service = DBMS

= Caches = bi-modal service time

distributions I
- report Hit ratios L = E =

- break out service times for Hits/Misses PR
separately L

TCP Connection
Management

In

il - | :||

1

i

Middleware

SPE: Foundations 5/26/2018

use pdq;
Perl & PDQ sample
Globals
$arrivRate = 0.75;
$servTime = 1.0;

pdq: :Init("Open Network with M/M/1");

pdq: :CreateOpen("Work", $arrivRate);

pdqg: :CreateNode("Server", $pdq::CEN, $pdq::FCFS);
pdq: :SetDemand("Server", "Work", $servTime);

Solve the model
pdq: :Solve($pdq: : CANON) ;

pdq: :Report();

SPE: Foundations 5/26/2018

Perl & PDQ sample

- Extend the simple sample:
- add a loop in Perl that increases the arrival rate
variable until the “Server” resource saturates .
Analyzing

- add additional secondary resources: disk, DBMS, Eler systom
network, etc.
- add additional servers

- model the network latency between servers as a
delay server (no queueing)

Performance
with Perl::PDQ

https://smile.amazon.com/Analyzing-Computer-System-Performance-Perl-ebook/dp/B00KTND1KO/ref=sr_1_2?ie=UTF8&qid=1538511300&sr=8-2&keywords=Analyzing+Computer+System+Performance+with+Perl::PDQ

SPE: Foundations 5/26/2018

Open and Closed models

 Closed models assume a limit 22, on the number of concurrent
customers
= requires the equilibrium assumption
= When a bottlenecked resource in a closed model saturates, the
maximum Q,., that can be observed is limited to n-7
- Open models draw customers from an infinite source, so the
maximum Q,_,, is ©

- the potential number of customers for some connected web-based
applications is so large that Open models can apply
- when arrival rates remain steady, even where there is contention!

- Heavy-traffic approximations: u = o

SPE: Foundations 5/26/2018

Limitations of closed network models
- Separability”

- must be able to be solve models for individual nodes separately, which
are then combined (Product-Form solution)
= Service policies:
* FIFO or FCFS
* Round robin
- Delay (no queueing behavior)
- Priority queuing with preemptive scheduling (approximations)
= Exponential service times

> Flow balance (A =C)

= * BCMP (Baskett, Chandy, Muntz & Palacios, 1975)

SPE: Foundations 5/26/2018

Limitations of closed network models

- see Gunther, ch. 3.
- Bulk arrivals (in general, anytime) + C)
= non-exponential service times
- Blocking, Mutual exclusion (locking)
= Mutual exclusion
- Queuing defections
= Fork/Join

« There are clever ways around most of these limitations
- Load-dependent servers
- Priority queueing (with preemptive scheduling)

SPE: Foundations 5/26/2018

use pdq;

$model = "Middleware"; P I & PD I
$work = "eBiz-tx"; er samp e
$nodel = "WebServer";

$node2 = "AppServer";

$node3 = "DBMServer";

$node4 = "DummySvr";

$think = 0.0 * le-3; # treat as free param

$users = 10;

pdq: :Init($model);

pdq: :CreateNode($nodel, $pdq::CEN, $pdq::FCFS);pdq::CreateNode($node2, $pdq::CEN, $pdq::FCFS);
pdq: :CreateNode($node3, $pdq::CEN, $pdq::FCFS);

pdq: :CreateNode($noded4, $pdq::CEN, $pdq::FCFS);

pdq: :CreateClosed($work, $pdq::TERM, $users, $think);

NOTE: timebase is seconds

pdq: :SetDemand($nodel, $work, 9.8 * 1le-3);
pdq: :SetDemand($node2, $work, 2.5 * le-3);
pdq: :SetDemand($node3, $work, ©.72 * le-3);
pdq: :SetDemand($node4, $work, 9.8 * le-3);

pdq: :Solve($pdq: : EXACT);
pdq: :Report();

SPE: Foundations 5/26/2018

Analytic queuing models: an Assessment

- Because they mimic the actual behavior of computer applications,
queuing models inform much of computer performance analysis

= relationship between response time & unitization is nonlinear
QT > ST, ifu>.50 (m/m/1)

« Scheduling algorithms that reduce variability in the service time
distribution help
- multiple service classes (minimally: foreground : background)
- time-slicing; avoiding starvation
= packet-switching in networks
- should routers queue requests when a server along the route is busy?

SPE: Foundations 5/26/2018

Analytic queuing models: an Assessment

- Because they mimic the actual behavior of computer applications,
queuing models inform much of computer performance analysis

 Model building & validation
= Train them on available measurement data - can the model accurately
predict observed performance?

- validation step often reveals the need for missing data or uncovers hidden
sources of resource contention

= Exact solution vs. more tractable approximation methods
- What if? predictive scenarios

- impact of new equipment that runs faster

- impact of adding load to model customer growth

SPE: Foundations 5/26/2018

Analytic queueing models: an Assessment

» Practical “guerilla” approach to using analytic models
- emphasize results; de-emphasize time-consuming model validation
- e.g., Model the application before you build it
= PDQ library is programmable

- Bottleneck analysis
= Required for intelligent alerting, automatic provisioning

* Alternatives to analytic models
- discrete-event simulation (see SPE'ED : UML => model)
= trace-driven simulation

http://www.perfeng.com/

SPE: Foundations 5/26/2018

Additional References

- Ed Lazowska, ef. al, Quantitative System Performance, 1984.
« Neil Gunther, 7he Practical Performance Analyst, 1998.
- Daniel Menascé, et. al.,, Performance By Design, 2004.

